\qquad
\qquad Class \qquad

Acceleration

Directions: On each line, write the term from the word bank that correctly completes each sentence. Each term is used only once.

backward	constant	decreasing	direction	forward
increasing	speed	velocity	x-axis	y-axis

1. A moving object undergoes an acceleration when its \qquad or
\qquad changes.
2. When a moving object slows down, its acceleration and \qquad are in opposition.
3. When a moving object slows down, an arrow representing its acceleration flips from \qquad to \qquad
4. On a speed-time graph, speed is plotted on the \qquad and time is on the \qquad .
5. On a speed-time graph, $a(n)$ \qquad speed is shown by a line going upward from the left.
6. On a speed-time graph, $a(n)$ \qquad speed is shown by a line going downward to the right.
7. On a speed-time graph, $\mathrm{a}(\mathrm{n})$ \qquad speed is represented by a horizontal line.
\qquad
\qquad Class \qquad

Content Practice B

Acceleration

Directions: On the speed-time graph below, draw a line showing the motion of a test car that moved forward at a speed of $50 \mathrm{~km} / \mathrm{h}$ and crashed into a barrier at the 5 -second mark. Continue the line for the full 10 seconds.

Directions: Answer each question or respond to each statement on the lines provided.
2. What is acceleration?
\qquad
\qquad
\qquad
3. When a moving object reduces its speed, what happens to the object's acceleration in relation to its velocity?
\qquad
\qquad
4. Why is a car rounding a curve accelerating, even if it is moving at a constant speed?
\qquad
\qquad
5. What does each letter in the following equation stand for: $a=\left(v_{f}-v_{i}\right) / t$?

