\qquad
\qquad
\qquad

Position and Motion

Directions: Complete this concept map by choosing terms from the word bank and writing them in the correct spaces. Each term is used only once.

difference	direction	displacement	distance
final	initial	reference point	

Directions: On each line, write the term that correctly completes each sentence.
8. The terms \qquad and \qquad can be useful when giving opposite directions from a reference point.
9. The process of changing positions is \qquad .
10. \qquad is the length of a path taken, whereas
\qquad is the difference between starting and ending locations.
\qquad
\qquad
\qquad

Position and Motion

Directions: Complete these paragraphs by writing the correct terms on the lines. Some terms might be used more than once.

To describe an object's (1.) you must first choose a(n)
(2.) \qquad as a starting place. From there, you must specify the
(3.) to the object and the (4.) in
which it lies from the starting place. If you are giving directions to two objects located in different directions from the same (5.) \qquad it can sometimes
be helpful to describe one object as being in the (6.) \qquad direction from that place and the other in the (7.) \qquad direction.

An object is in (8.) \qquad any time its
(9.) \qquad is changing. In most cases, such a change involves changes in
(10.) \qquad and (11.) \qquad from the starting point. However, if an object returns to its starting point, its
(12.) \qquad is zero, even though it might have traveled a considerable (13.) \qquad -.
\qquad
\qquad
\qquad

Content Practice A

Speed and Velocity

Directions: On each line, write the term from the word bank that correctly completes each sentence. Each term is used only once.

average	constant	direction	distance	horizontal
instantaneous	steep	time	velocity	

1. Speed is a measure of the \qquad an object travels in a unit of \qquad
2. When a moving object's change of position is equal in every second, it is moving at $\mathrm{a}(\mathrm{n})$ \qquad speed.
3. An object's speed at any particular moment is its \qquad speed.
4. Its speed for the entire duration that it is in motion from one place to another is its \qquad speed.
5. $\mathrm{A}(\mathrm{n})$ \qquad line on a distance-time graph shows a fast speed.
6. $\mathrm{A}(\mathrm{n})$ \qquad portion on a distance-time graph shows a period of no motion.
7. The \qquad of a moving object includes its speed and \qquad _.
\qquad
\qquad
\qquad

Speed and Velocity

Directions: Draw a line on each of the time-distance graphs below as instructed.

1. Show a car's constant speed of $75 \mathrm{~km} / \mathrm{h}$ on a city street.
2. What are three ways that an object can change its velocity?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad Class \qquad

Acceleration

Directions: On each line, write the term from the word bank that correctly completes each sentence. Each term is used only once.

backward	constant	decreasing	direction	forward
increasing	speed	velocity	x-axis	y-axis

1. A moving object undergoes an acceleration when its \qquad or
\qquad changes.
2. When a moving object slows down, its acceleration and \qquad are in opposition.
3. When a moving object slows down, an arrow representing its acceleration flips from \qquad to \qquad
4. On a speed-time graph, speed is plotted on the \qquad and time is on the \qquad .
5. On a speed-time graph, $a(n)$ \qquad speed is shown by a line going upward from the left.
6. On a speed-time graph, $a(n)$ \qquad speed is shown by a line going downward to the right.
7. On a speed-time graph, $\mathrm{a}(\mathrm{n})$ \qquad speed is represented by a horizontal line.
\qquad
\qquad Class \qquad

Content Practice B

Acceleration

Directions: On the speed-time graph below, draw a line showing the motion of a test car that moved forward at a speed of $50 \mathrm{~km} / \mathrm{h}$ and crashed into a barrier at the 5 -second mark. Continue the line for the full 10 seconds.

Directions: Answer each question or respond to each statement on the lines provided.
2. What is acceleration?
\qquad
\qquad
\qquad
3. When a moving object reduces its speed, what happens to the object's acceleration in relation to its velocity?
\qquad
\qquad
4. Why is a car rounding a curve accelerating, even if it is moving at a constant speed?
\qquad
\qquad
5. What does each letter in the following equation stand for: $a=\left(v_{f}-v_{i}\right) / t$?

