\qquad
\qquad
\qquad

Key Concept Builder

Work and Power

Key Concept What must happen for work to be done?
Directions: Put a check mark on the line before the each example that represents work being done on an object.
\qquad 1. lifting a box off the ground
\qquad 2. carrying a box across a room
\qquad 3. carrying a box up a flight of stairs
\qquad 4. pushing a stalled car
\qquad 5. pushing against a sturdy stone wall
\qquad 6. holding a suitcase
\qquad 7. putting a suitcase on an overhead rack
\qquad 8. picking up a penny from a sidewalk

Directions: On each blank line, write the word that correctly completes the sentence.
9. When a force is applied to an object, no work is being performed on the object unless the object \qquad _.
10. The unit of work, the newton-meter, is also known as the \qquad
\qquad
\qquad Class \qquad

Work and Power

Key Concept What must happen for work to be done?

Work Equation

$$
\begin{aligned}
\text { Work }(\text { in joules }) & =\text { force (in newtons) } \times \text { distance (in meters) } \\
\boldsymbol{W} & =\text { Fd }
\end{aligned}
$$

Directions: Use the equation to calculate how much work is being done in each example.

1. Sam lifts a brick weighing 10 N from the ground and places it on a ledge 1.5 m high. How much work has Sam done on the brick? \qquad
2. Tara pushes a $140-\mathrm{N}$ chair 12 m across the basement floor. How much work has been performed on the chair? \qquad
3. Erik pulls a sled 25 m through the snow. The sled weighs 200 N. How much work has Erik done on the sled? \qquad

Directions: Answer each question on the lines provided.
4. If a leaf falls from a tree, has work been done on the leaf? Explain.
\qquad
\qquad
\qquad
5. What is the amount of force required to lift an object against the force of gravity equal to?
\qquad
6. What is the only part of an applied force that performs work on object?
\qquad
\qquad Class \qquad

Key Concept Builder

Work and Power

Key Concept How does doing work on an object change its energy?
Directions: Answer each question on the lines provided.

1. How can doing work on an object increase its kinetic energy?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. How can doing work on an object increase its potential energy?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Directions: On the line before each item, write K if the work gives the object kinetic energy, P if it gives the object potential energy, or B if it gives the object both kinetic and potential energy.
3. pushing a grocery cart \qquad
4. rolling a ball \qquad
5. carrying a suitcase to a higher floor \qquad
6. tossing a ball above your head \qquad
7. rowing a boat \qquad
\qquad
\qquad Class \qquad

Work and Power

Key Concept How are work and power related?

Power Equation

Power (in watts) $=\frac{\text { work (in joules) }}{\text { time (in seconds) }}$

$$
P=\frac{W}{t}
$$

Directions: Use the equation to answer each question.

1. A task lasted 40 seconds and required $2,000 \mathrm{~J}$ of work to complete. How much power was used?
2. How much power is required to do $1,500 \mathrm{~J}$ of work in 60 seconds?
3. How much power is expended doing $1,800 \mathrm{~J}$ of work in 1 minute?

Directions: On each line, write the term that correctly completes each sentence.
4. Power is the rate at which \qquad is done.
5. Power is also considered to be the rate at which transferred to an object.

