10

Lesson Outline

Mendel and His Peas

A. Early Ideas About Heredity

- **1.** _________ is the passing of traits from parents to offspring.
- 2. In the 1850s, ______, an Austrian friar, performed experiments that helped answer questions about how traits are inherited.
- _____ is the study of how traits pass from parents to 3. offspring.

B. Mendel's Experimental Methods

- 1. Pea plants were ideal for genetic studies because they _____ quickly; they have easily observed _____; and the experimenter can control which pairs of plants _____.
- **2.** Mendel controlled which plants ______ other plants.
 - **a.** When a(n) ______ plant self-pollinates, it always produces offspring with traits that match the parent.
 - **b.** By _____ _____ plants himself, Mendel was able to select which plants pollinated other plants.
- **3.** With each cross-pollination Mendel did, he recorded the traits that appeared in the _____.
- **C.** Mendel's Results
 - 1. Mendel's crosses between true-breeding plants with purple flowers produced plants with only ______ flowers. Crosses between true-breeding plants with white flowers produced plants with only ______ flowers.
 - **2.** Crosses between true-breeding plants with purple flowers and true-breeding plants with white flowers produced plants with only ______ flowers.
 - 3. The first-generation purple-flowering plants are called ______ plants.
 - **4.** When Mendel cross-pollinated two hybrid plants, the trait that had disappeared in the first generation always ______ in the second generation.

Genetics

Lesson Outline continued

5. Mendel analyzed the data from many experiments on seven different

He always noted a 3:1	
, file always fioled a 5.1	

for example, purple flowers grew from hybrid crosses _____ times more often than white flowers.

- **D.** Mendel's Conclusions
 - 1. After analyzing the results of his experiments, Mendel concluded that two

_____ control each trait.

2. Mendel also proposed that, when organisms reproduce, each

_____, sperm or egg, contributes one factor for each trait.

- **3.** A genetic factor that blocks another genetic factor is _____
- **4.** A genetic factor that is blocked by the presence of a dominant factor is called ______.
- 5. For the second generation, Mendel cross-pollinated two hybrids with purple flowers. About ______ percent of the second-generation plants

had purple flowers. These plants had at least one ______ factor.

_____ percent of the second-generation plants had white

flowers. These plants had the same two ______ factors.