\qquad
\qquad
\qquad
Lesson Outline

Electric Current and Simple Circuits

A. Electric Current and Electric Circuits

1. $\mathrm{A}(\mathrm{n})$ \qquad is the movement of electrically charged particles.
2. An electric current can flow in $\mathrm{a}(\mathrm{n})$ \qquad path to and from a source of electric energy.
a. $\mathrm{A}(\mathrm{n})$ \qquad is a closed path in which an electric current travels.
b. If the circuit is broken, or \qquad , then electrons do not flow.
3. The number of electrons leaving a power source \qquad the number of electrons entering it.
4. Electrons are counted using a unit called the \qquad .
a. The SI unit for electric current is the \qquad .
b. An ampere is about 1 \qquad of electrons flowing past
a point in a circuit every \qquad
B. What is electrical resistance?
5. \qquad is a measure of how difficult it is for an electric current to flow in a material.
6. The unit of electric resistance is the \qquad .
7. A good conductor has \qquad electric resistance, and a good insulator has \qquad electric resistance.
8. Electric resistance depends on the \qquad and the thickness of the material.
a. When the thickness of a conductor increases, its electric resistance \qquad _.
b. When the length of a conductor increases, its electric resistance \qquad _.
\qquad
\qquad Class \qquad

Lesson Outline continued

D. Ohm's Law

1. The \qquad and the resistance of a circuit are related. When the resistance of a circuit increases, the current in the circuit \qquad _.
2. \qquad is a mathematical equation that describes the relationship among \qquad , current, and
a. According to Ohm's law, voltage equals times
resistance.
b. When using Ohm's law, voltage has units of _ current has units of \qquad and resistance has units
of \qquad
3. When current is constant, devices that have \qquad resistance use more electric energy.
