\qquad
\qquad
\qquad

Lesson Outline

Newton's Third Law

A. Opposite Forces

1. When an object applies a force on another object, the second object applies a force of the same \qquad on the first object.
2. When an object exerts a force on another object, the second object exerts a force on the first object in the \qquad direction.
B. Newton's Third Law of Motion
3. According to \qquad when one object applies a force on a second object, the second object applies an equal force in the opposite direction on the first object.
4. Any time a person \qquad against a stationary object, the object exerts an equal and opposite force on the person.
5. $\mathrm{A}(\mathrm{n})$ \qquad is the forces that two objects apply to each other.
a. The forces in a force pair are equal in strength and act in \qquad directions. They do not cancel each other out because each acts on a different \qquad _.
b. For every action force, there is a reaction force that is equal in
\qquad but opposite in \qquad of the action force.
C. Using Newton's Third Law of Motion
6. When you push against an object, the force you apply is called the
\qquad force.
7. Newton's third law establishes that the object you push on applies an equal and opposite \qquad force against you.
8. According to Newton's second law of motion, when the reaction force results in an unbalanced force, there is $\mathrm{a}(\mathrm{n})$ \qquad force, and the object accelerates.
D. Momentum
9. \qquad is a measure of how hard it is to stop a moving object.
10. Momentum is the product of an object's \qquad and its \qquad .
\qquad
\qquad
\qquad

Lesson Outline continued

3. According to Newton's second law of motion, the force on an object is equal to the mass of the object multiplied by the acceleration, or the \qquad in the object's velocity.
4. Because momentum is the product of mass and velocity, the force on an object equals its change in \qquad .
E. Conservation of Momentum
5. In any collision, one object transfers \qquad to another object.
6. According to the \qquad the total momentum of a group of objects remains the same unless outside forces act on the objects.
7. One outside force is \qquad which decreases the velocities of billiard balls and most other moving objects, and they lose momentum.
8. In $\mathrm{a}(\mathrm{n})$ \qquad collision, the colliding objects bounce off each other.
9. In $\mathrm{a}(\mathrm{n})$ \qquad collision, the colliding objects stick together.
10. In elastic and inelastic collisions, the total \qquad of all the objects is always the same before and after any collision.
