Lesson Outline

Newton's Third Law

- **A.** Opposite Forces
 - **1.** When an object applies a force on another object, the second object applies a force of the same ______ on the first object.
 - 2. When an object exerts a force on another object, the second object exerts a force on the first object in the ______ direction.
- **B.** Newton's Third Law of Motion
 - **1.** According to ______, when one object applies a force on a second object, the second object applies an equal force in the opposite direction on the first object.
 - 2. Any time a person ______ against a stationary object, the object exerts an equal and opposite force on the person.
 - **3.** A(n) ______ is the forces that two objects apply to each other.
 - **a.** The forces in a force pair are equal in strength and act in _____ directions. They do not cancel each other out because each acts on a different ______.
 - **b.** For every action force, there is a reaction force that is equal in

_____ but opposite in _____ of the action force.

- **C.** Using Newton's Third Law of Motion
 - 1. When you push against an object, the force you apply is called the

______ force.

- 2. Newton's third law establishes that the object you push on applies an equal and opposite ______ force against you.
- **3.** According to Newton's second law of motion, when the reaction force results in an unbalanced force, there is a(n) ______ force, and the object accelerates.
- **D.** Momentum
 - **1.** _______ is a measure of how hard it is to stop a moving object.
 - **2.** Momentum is the product of an object's ______ and

its _____.

Lesson Outline continued

- **3.** According to Newton's second law of motion, the force on an object is equal to the mass of the object multiplied by the acceleration, or the _____ in the object's velocity.
- 4. Because momentum is the product of mass and velocity, the force on an object equals its change in _____
- **E.** Conservation of Momentum
 - **1.** In any collision, one object transfers _______ to another object.
 - **2.** According to the ______, the total momentum of a group of objects remains the same unless outside forces act on the objects.
 - **3.** One outside force is ______, which decreases the velocities of billiard balls and most other moving objects, and they lose momentum.
 - **4.** In a(n) ______ collision, the colliding objects bounce off each other.
 - **5.** In a(n) ______ collision, the colliding objects stick together.
 - **6.** In elastic and inelastic collisions, the total ______ of all the objects is always the same before and after any collision.