Lesson Outline

LESSON 1

Position and Motion

- **A.** Describing Position
 - **1.** A(n) ______ is a starting point you choose to describe the location, or position, of an object.
 - _____ is an object's distance and direction from a **2.** A(n) _____ reference point.
 - **3.** A complete description of a position includes a distance,

a(n) ______, and a reference point.

- **4.** A good choice for a(n) _______ is something that is easy to find.
- 5. If a reference point changes, the description of an object's

_____ will also change.

- 6. Changing a reference point does not change the actual _____ of an object.
- 7. When you describe an object's position, you compare its location to a reference _____
- **8.** A reference direction can be described as a(n) ______ direction. The opposite direction is the ______ direction.
- **B.** Describing Position in Two Dimensions
 - **1.** When you describe position using two directions, you are using two _____.
 - _____ directions in two dimensions include 2. Examples of _____ "north and east" and "right and forward."
 - **3.** To find a position in two dimensions, first choose a reference

_____. Next specify reference _____.

Then determine the ________ along each reference direction.

C. Describing Changes in Position

- **1.** ________ is the process of changing position. It is always
 - described relative to a(n) ______.
- **2.** It is possible to move with regard to one ______ and stay motionless with regard to another _____

Lesson Outline continued

- **3.** _______ is the length of the path an object moves along.
- final position of an object.
- 5. Distance and displacement are equal only if the motion is in

one _____ .

Lesson Outline

Speed and Velocity

- **A.** What is speed?
 - **1.** _______ is a measure of the distance an object travels per unit of time.
 - **2.** Units of speed are units of ______ divided by units of time. The SI unit for speed is ______ per second.
 - _____ is the rate of change of position in which the same 3. distance is traveled each second.
 - ______ is speed at a specific instant in time. 4.
 - 5. _____ ______ is the total distance traveled divided by the total time it took to go that distance.
 - **6.** The equation for average speed is $v = \frac{d}{t}$, where the symbol v stands for average speed, *d* stands for total _____, and *t* stands for total time.

B. Distance-Time Graphs

- **1.** Graphs that compare distance and time are called ______ graphs.
- **2.** Constant speed is shown as a(n) ______ line on a distance-time graph.
- **3.** Distance-time graphs can be used to compare the ______ of two different objects.
- **4.** ______ lines on distance-time graphs indicate faster speeds.
- **5.** Distance-time graphs can be used to ______ the average speed of an object. The difference in ______ between two points is
 - divided by the difference in ______ between the same points.
- 6. When the slope of a line on a distance-time graph decreases, it means that the speed of the object is ______.
- **7.** A(n) ______ line on a distance-time graph indicates that the motion has stopped.
- 8. When the slope of a line on a distance-time graph increases, it means that the speed of the object is ______.
- **9.** Even when the speed of an object isn't _____, its average speed can be calculated from a distance-time graph.

Lesson Outline continued

- **C.** Velocity
 - **1.** _________ is the speed and the direction of a moving object.
 - **2.** The velocity of an object can be represented by a(n) ______. The length of the arrow indicates the ______. The arrow points in the direction of the object's ______.
 - **3.** Velocity ______ when the speed of an object changes, when the direction in which the object is moving changes, or when the speed and the direction change.

Dutc	Name	Date	Class
------	------	------	-------

Lesson Outline

Acceleration

- **A.** Acceleration—Changes in Velocity
 - **1.** ________ is a measure of the change in velocity during a period of time.
 - 2. An object accelerates when its velocity changes as a result of increasing speed, decreasing speed, or a change of ______.
 - **3.** Like velocity, acceleration has a direction and can be represented by a(n) ______.

4. An acceleration arrow's direction depends on whether the

_____ increases or decreases.

a. When the velocity of an object is increasing, the acceleration arrow points in the

_____ direction as the velocity arrows.

- **b.** When the velocity of an object is decreasing, the acceleration arrow points in the _____ direction as the velocity arrows.
- 5. When an object changes direction, the acceleration arrows point to the

______ of the curve along which the object is moving.

- **B.** Calculating Acceleration
 - **1.** _______ is a change in velocity during a time interval divided by the time interval during which the velocity changes.
 - **2.** If SI units are used in the acceleration equation, then acceleration has units of _____.
 - **3.** If acceleration is negative, then it is ______ the direction of motion.

C. Speed-Time Graphs

- **1.** A(n) ______ can be used to show how speed changes over time.
- **2.** A speed-time graph has ______ plotted on the horizontal axis, which is the *x*-axis. _______ is plotted on the vertical axis, which is the *y*-axis.
- **3.** The speed-time graph for an object at _______ is a horizontal line at y = 0.

Lesson Outline continued

- **4.** If an object is moving at ______ speed, its speed-time graph is a horizontal line above the *x*-axis.
- 5. The speed-time graph for an object that is speeding up is a line that slants

_____ toward the right side of the graph.

6. If an object is slowing down, its speed-time graph is a line that slants

______ toward the right side of the graph.

- 7. Speed-time graphs do not show what happens when velocity changes as the result of a change of ______.
- **D.** Summarizing Motion
 - **1.** ______ can be described by one's direction and distance from a reference point.
 - 2. Distance and displacement can be compared to find one's average ______.
 - **3.** Speed and direction describe one's _____.
 - **4.** If one's velocity is _____, that person is accelerating.