\qquad
\qquad
\qquad

Lesson Outline

Position and Motion

A. Describing Position

1. $A(n)$ \qquad is a starting point you choose to describe the location, or position, of an object.
2. $A(n)$ \qquad is an object's distance and direction from a reference point.
3. A complete description of a position includes a distance, a(n) \qquad and a reference point.
4. A good choice for $\mathrm{a}(\mathrm{n})$ \qquad is something that is easy to find.
5. If a reference point changes, the description of an object's
\qquad will also change.
6. Changing a reference point does not change the actual \qquad of an object.
7. When you describe an object's position, you compare its location to a reference \qquad .
8. A reference direction can be described as a(n) \qquad direction. The opposite direction is the \qquad direction.
B. Describing Position in Two Dimensions
9. When you describe position using two directions, you are using two \qquad .
10. Examples of \qquad directions in two dimensions include "north and east" and "right and forward."
11. To find a position in two dimensions, first choose a reference
\qquad Next specify reference \qquad Then determine the \qquad along each reference direction.
C. Describing Changes in Position
12. \qquad is the process of changing position. It is always described relative to $\mathrm{a}(\mathrm{n})$ \qquad .
13. It is possible to move with regard to one \qquad and stay motionless with regard to another \qquad
\qquad
\qquad Class \qquad

Lesson Outline continued

3. is the length of the path an object moves along.
4. \qquad is the difference between the initial position and the final position of an object.
5. Distance and displacement are equal only if the motion is in one \qquad —.
\qquad
\qquad
\qquad
Lesson Outline

Speed and Velocity

A. What is speed?

1. \qquad is a measure of the distance an object travels per unit of time.
2. Units of speed are units of \qquad divided by units of time. The SI unit for speed is \qquad per second.
3. \qquad is the rate of change of position in which the same distance is traveled each second.
4. \qquad is speed at a specific instant in time.
5. \qquad is the total distance traveled divided by the total time it took to go that distance.
6. The equation for average speed is $v=\frac{d}{t}$, where the symbol v stands for average speed, d stands for total \qquad and t stands for total time.
B. Distance-Time Graphs
7. Graphs that compare distance and time are called \qquad graphs.
8. Constant speed is shown as $a(n)$ \qquad line on a distance-time graph.
9. Distance-time graphs can be used to compare the of two different objects.
10. \qquad lines on distance-time graphs indicate faster speeds.
11. Distance-time graphs can be used to \qquad the average speed of an object. The difference in \qquad between two points is divided by the difference in \qquad between the same points.
12. When the slope of a line on a distance-time graph decreases, it means that the speed of the object is \qquad .
13. A(n) \qquad line on a distance-time graph indicates that the motion has stopped.
14. When the slope of a line on a distance-time graph increases, it means that the speed of the object is \qquad .
15. Even when the speed of an object isn't \qquad its average speed can be calculated from a distance-time graph.
\qquad
\qquad Class \qquad

Lesson Outline continued

C. Velocity

1. \qquad is the speed and the direction of a moving object.
2. The velocity of an object can be represented by a(n) \qquad The length of the arrow indicates the \qquad The arrow points in the direction of the object's \qquad .
3. Velocity \qquad when the speed of an object changes, when the direction in which the object is moving changes, or when the speed and the direction change.
\qquad
\qquad
\qquad

Lesson Outline

Acceleration

A. Acceleration-Changes in Velocity

1. \qquad is a measure of the change in velocity during a period of time.
2. An object accelerates when its velocity changes as a result of increasing speed, decreasing speed, or a change of \qquad .
3. Like velocity, acceleration has a direction and can be represented by a(n) \qquad .
4. An acceleration arrow's direction depends on whether the
\qquad increases or decreases.
a. When the velocity of an object is increasing, the acceleration arrow points in the
\qquad direction as the velocity arrows.
b. When the velocity of an object is decreasing, the acceleration arrow points in the
\qquad direction as the velocity arrows.
5. When an object changes direction, the acceleration arrows point to the
\qquad of the curve along which the object is moving.
B. Calculating Acceleration
6. \qquad is a change in velocity during a time interval divided by the time interval during which the velocity changes.
7. If SI units are used in the acceleration equation, then acceleration has units of \qquad _.
8. If acceleration is negative, then it is \qquad the direction of motion.
C. Speed-Time Graphs
9. A(n) \qquad can be used to show how speed changes over time.
10. A speed-time graph has \qquad plotted on the horizontal axis, which is the x-axis. \qquad is plotted on the vertical axis, which is the y-axis.
11. The speed-time graph for an object at \qquad is a horizontal line at $y=0$.
\qquad
\qquad Class \qquad

Lesson Outline continued

4. If an object is moving at \qquad speed, its speed-time graph is a horizontal line above the x-axis.
5. The speed-time graph for an object that is speeding up is a line that slants
\qquad toward the right side of the graph.
6. If an object is slowing down, its speed-time graph is a line that slants
\qquad toward the right side of the graph.
7. Speed-time graphs do not show what happens when velocity changes as the result of a change of \qquad
D. Summarizing Motion
8. \qquad can be described by one's direction and distance from a reference point.
9. Distance and displacement can be compared to find one's average \qquad —.
10. Speed and direction describe one's \qquad
11. If one's velocity is \qquad that person is accelerating.
