Lesson Outline

LESSON 3

Describing Circuits

- **A.** Parts of an Electric Circuit
 - **1.** An electric circuit transforms ______ energy to other forms of energy.
 - **2.** An electric circuit contains a(n) ______ source.

terminal.

- **a.** A(n) ______ is often used as an energy source.
- **b.** As chemicals react within a battery, the battery's _____ terminal loses electrons and its _______ terminal gains electrons.
- **c.** When the terminals are connected in a closed circuit, electrons flow from the _____ terminal of a battery to the
- **3.** An electric circuit contains at least one electric ______ that transforms energy.
 - **a.** Within a battery, ______ energy transforms into _____ energy of moving electrons.
 - ___ with the **b.** When the electrons flowing in a conductor _____ atoms that make up the conductor, the electrons transfer some of their _____ energy to the atoms.
- **4.** An electric circuit contains ______ that connect its components.
 - **a.** Wires that connect components of a circuit have _____ electric resistance.
 - **b.** Only a small amount of electric energy is transformed into
 - energy by wires, which means that more energy is available for useful devices in the circuit.
- **B.** Series and Parallel Circuits
 - circuit is an electric circuit that has only one **1.** A(n) _____ closed path for an electric current to follow.
 - **a.** Because there is only one path, when a series circuit is _______, all _____turn off.

Lesson Outline continued

b. Adding devices to a series circuit adds ______ to the circuit and ______ the current in the circuit. _____circuit is an electric circuit that has more than one closed path for an electric current to follow. **a.** Most circuits in homes are _____ circuits. **b.** In a parallel circuit, each ______ has its own path, or _____, that connects it to the source. **c.** If you ______ one branch of a parallel circuit, current continues through other branches. **d.** Adding devices and branches to a parallel circuit ______ the total electric current through the ______. C. Electric Circuits in the Home **1.** Electric energy is generated at large ______. **2.** Before entering your house through a main ______, the main wire passes through a(n) ______, which measures the _____ used in your home. **3.** ______ and circuit _____ are safety devices that keep the ______ in a circuit from becoming too high. _____is a safety device in an electric outlet that opens a circuit to stop current flow, which can help protect you from electric ______.

D. Electric Safety

- 1. An electric shock occurs when a(n) ______ passes through
- 2. Ways to protect yourself from electric shock include staying away from _____ while using electric devices, avoiding using _____ cords, and not contacting electric power ______.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

lame	Date	Class	

LESSON 3: 20 minutes

What else can a circuit do?

Look around your kitchen. Electricity can do more than light a few bulbs. We use electricity to generate heat in a toaster, to remove heat from inside the refrigerator, and to chop food in a blender.

Procedure 🛜 퉪 🍞

At each lab station, examine the device displayed. Record your observations in the table shown in the Data and Observations section below.

Data and Observations

Device	What It Does	Source of Electric Energy	Energy Transformed Into

Analyze and Conclude

1. Select two devices and compare and contrast their operation.

2. Concept Discuss the types of energy transformations that occur in electric devices.