LESSON 1

Gravity and Friction

A. Types of Forces	A.	Types	of	Forces
---------------------------	----	--------------	----	--------

1	Δ -	nuch	or a	null is	called a	(n)	
١.	Α	pusn	or a	pull 13	caneu a	(11)	

- **2.** A(n) _____ _____ is a push or a pull on an object by another object that is touching it.
- **3.** A force that one object can apply to another object without touching it is
- **4.** Gravity, ______, and electric forces are examples of noncontact forces.
- **5.** Forces have _____ and _____.
- **6.** An arrow can be used to show a force; the _____ strength of the force, and the direction of the arrow shows the of the force.
- **7.** Forces are measured in units called _____

B. What is gravity?

- **1.** ______ is the amount of matter in an object.
- _____ is an attractive force that exists between all objects that have mass.
- **3.** Mass is often measured in ______.
- **4.** According to the law of ______, all objects are attracted to one another with a gravitational force that is proportional to the mass of the objects and the distance between them.
 - **a.** When the mass of one or both objects increases, the gravitational force between
 - **b.** When the distance between two objects increases, the attraction between the
- **5.** ______ is the gravitational force exerted on an object.
 - **a.** Near Earth's surface, an object's weight is the gravitational force exerted on the object by ______.
 - **b.** The ______ of an object on Earth decreases significantly only when the object moves a great distance away from Earth.

_____ is a force that resists the motion of two surfaces that are

Lesson Outline continued

1. _____

C. Friction

touching. **2.** ______ friction prevents surfaces from sliding past each other. **3.** Up to a limit, the ______ of static friction changes to match the applied force. **4.** ______ friction opposes the motion of surfaces sliding past each other. **a.** When an object is sliding, the force of sliding friction does not _____; for this reason, increasing the applied force makes a sliding object move ______. **b.** If you stop pushing a sliding object, the object will eventually _____ due to sliding friction. 5. _ ______ is friction between a surface and a fluid, such as air or water.

- **a.** Fluid friction between an object and air is called _____
- **b.** Decreasing an object's surface area by changing its shape _____ the object's air resistance.
- **6.** One reason for friction between surfaces is the ______, or the dips and bumps on one surface that catch on those of the other surface.
- **7.** One reason for friction between surfaces is that atoms and molecules with _____ charges attract each other.
- ______ decrease friction by causing a slight separation between solid surfaces, so they don't contact each other.

LESSON 2

Newton's First Law

A. Identifying Forces

1.	• To understand the motion of an object, you need to understand the			
	acting on it.			
2.	. When two or more forces act on an object, the forces			
	a. The combination of all the forces that act on an object is			
	the			

- **b.** When the forces applied to an object act in the same direction, the net force is the ______ of the individual forces.
- **c.** Because forces have direction as well as strength, when you combine forces, you also have to specify a(n) ______.
- **d.** When you combine forces in two opposite directions, one force is _____ and the other force is _____.
- **e.** When the forces applied to an object act in exact opposite directions, the net force is the ______ of the individual positive and negative forces.
- **3.** Forces that combine and form a net force of zero are ______.
 - **a.** Balanced forces have no effect on the ______ of an object.
 - **b.** Forces that combine and form a net force that is not zero are ______.

B. Newton's First Law of Motion

- **1.** According to ______, if the net force on an object is zero, the motion of the object does not change.
- **2.** When ______ forces act on an object, the object's velocity does not change.
- **3.** If unbalanced forces act on an object at rest, the object will
- 4. If unbalanced forces act on a moving object, the object will change

its ______.

Lesson Outline continued

- **5.** The tendency of an object to resist a change in its motion is
- **C.** Why do objects stop moving?
 - **1.** A book sitting on a table stays in place because of ______.
 - 2. If you want to make the book move, you have to push the book hard enough to overcome the ______ between the book and the table.
 - **3.** On Earth, _____ can be reduced, but it never goes away completely.
 - **4.** On Earth, to keep an object in motion, a(n) ______ that balances friction must be applied continuously to it.

LESSON 3

Newton's Second Law

A. How do forces change motion?

1.	Forces change an object's motion by changing its, its
	, or both.
2.	Only forces can change the velocity of an object.
3.	You know unbalanced forces are acting on an object that is at rest when the object
	starts
4.	Unbalanced forces change the of a moving object.
	a. If a net force acts on a moving object in the direction that the object is moving,
	the object will
	b. If a net force acts on a moving object in the direction that is opposite to the
	direction that the object moves, the object
	c. Another way unbalanced forces can change the velocity of a moving object is to
	change the of the object's motion.
5.	The force of gravity acts on a ball that is thrown by changing the direction of the
	ball, pulling it
6.	Another name for change in velocity over time is
7.	Unbalanced forces can make an object accelerate by changing the object's
	,, or both.
Nev	vton's Second Law of Motion
1.	According to, the acceleration of an object is equal to the net force acting on the object divided by the object's mass.
2.	The direction of acceleration is the same as the direction of
	the
3.	The units for Newton's second law are SI units—force is measured in
	; mass is measured in;
	acceleration is measured in

4. One newton is the same as one _____

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Lesson Outline continued

C. Circular Motion

1. ______ is any motion in which an object is moving in a curved path.

2. _____ causes objects to tend to move along a straight path.

3. In circular motion, a force that acts perpendicular to the direction of motion toward the center of the circle is called a(n) ______.

4. An object that is moving in a curve accelerates in the _____ of the centripetal force.

5. Any object that circles a larger object is called a(n) ______.

a. Satellites move in a circle because a(n) ______ acts on them.

b. ______ is the centripetal force that acts on satellites by continuously changing their direction of motion; this results in _____ motion.

6. Earth's _____ keeps the Moon in orbit around Earth.

7. The planets remain in orbit because the ______ gravity pulls on them.

LESSON 4

Newton's Third Law

A.	Opt	posite	Force	5
	\sim P	PODICE	10100	-

	1.	1. When an object applies a force on anoth	ner object, the second object applies a force
		of the same	on the first object.
	2.	2. When an object exerts a force on another	er object, the second object exerts a force
		on the first object in the	direction.
B.	Nev	ewton's Third Law of Motion	
	1.	second object, the second object applies the first object.	_, when one object applies a force on a an equal force in the opposite direction or
	2.	2. Any time a person object exerts an equal and opposite force	
	3.	3. A(n) is the f	orces that two objects apply to each other.
		directions. They do not cancel each o different b. For every action force, there is a react	
		but oppo	site in of the
c.	Usiı	sing Newton's Third Law of Motion	
	1.	1. When you push against an object, the fo	orce you apply is called the
	2.	2. Newton's third law establishes that the	object you push on applies an equal and
		opposite for	ce against you.
	3.	3. According to Newton's second law of mo	otion, when the reaction force results in
		an unbalanced force, there is a(n)accelerates.	force, and the object

D. Momentum

- **1.** ______ is a measure of how hard it is to stop a moving object.
- 2. Momentum is the product of an object's ______ and

Lesson Outline continued

- **3.** According to Newton's second law of motion, the force on an object is equal to the mass of the object multiplied by the acceleration, or the ______ in the object's velocity.
- **4.** Because momentum is the product of mass and velocity, the force on an object equals its change in ______.
- **E.** Conservation of Momentum
 - **1.** In any collision, one object transfers _______ to another object.
 - **2.** According to the _______, the total momentum of a group of objects remains the same unless outside forces act on the objects.
 - **3.** One outside force is _______, which decreases the velocities of billiard balls and most other moving objects, and they lose momentum.
 - **4.** In a(n) _____ collision, the colliding objects bounce off each other.
 - **5.** In a(n) _____ collision, the colliding objects stick together.
 - **6.** In elastic and inelastic collisions, the total ______ of all the objects is always the same before and after any collision.