3.2 Newton's Second Law

Lesson 14.2: True or False

Name_____ Class_____ Date_____

Determine if the following statements are true or false.

- _____1. The relationship between mass and inertia is described by Newton's second law of motion.
- _____2. Newton determined that there is a direct relationship between force and mass.
- _____ 3. Any change in velocity for any reason is called acceleration.
- _____4. The greater the net force applied to a given object, the more it will accelerate.
- _____5. The greater the mass of an object, the more it will accelerate when a given net force is applied to it.
- _____ 6. A net force of 1 N applied to a mass of 1 kg results in an acceleration of 0.5 m/s^2 .
- _____7. Your weight equals your mass multiplied by the acceleration due to gravity.
- 8. A 10-kg object has greater acceleration due to gravity than a 5-kg object.
- 9. The acceleration of an object equals its mass times the net force applied to it.
- 10. The acceleration of an object due to gravity depends on the object's initial velocity

Lesson 14.2: Critical Reading

Name_____ Class____ Date____

Read this passage from the text and answer the questions that follow.

Acceleration and Weight

Newton's second law of motion explains the weight of objects. Weight is a measure of the force of gravity pulling on an object of a given mass. It's the force (F) in the acceleration equation that was introduced above:

$$a = \frac{F}{m}$$

This equation can also be written as:

 $F = m \times a$

The acceleration due to gravity of an object equals 9.8 m/s^2 , so if you know the mass of an object, you can calculate its weight as:

 $F = m \times 9.8 \text{ m/s}^2$

3.2. Newton's Second Law

As this equation shows, weight is directly related to mass. As an object's mass increases, so does its weight. For example, if mass doubles, weight doubles as well.

Questions

- 1. Define weight.
- 2. How is the weight of an object related to its mass?
- 3. If an object has a mass of 50 kg, what is its weight?

Lesson 14.2: Multiple Choice

Circle the letter of the correct choice.

- 1. An object is accelerating when it
 - a. speeds up.
 - b. slows down.
 - c. changes direction.
 - d. any of the above
- 2. Newton's second law of motion relates an object's acceleration to
 - a. its mass.
 - b. its velocity.
 - c. the net force acting on it.
 - d. two of the above
- 3. Doubling the net force acting on an object
 - a. doubles its acceleration.
 - b. decreases it acceleration.
 - c. cuts its acceleration in half.
 - d. does not affect its acceleration.
- 4. If you push a 20-kilogram mass with a force of 40 N, what will be the object's acceleration?
 - a. 40 m/s²
 - b. 20 m/s²
 - c. 10 m/s^2
 - d. 2 m/s^2

5. Which units can be used to express force?

- a. N
- b. kg/s^2
- c. kg m/s²
- d. two of the above
- 6. If you know the mass of an object, you can calculate its weight with the formula
 - a. $F = m \times 9.8 \text{ m}$ b. $F = m \times 9.8 \text{ m/s}$ c. $F = m \times 9.8 \text{ m/s}^2$ d. $F = m \times 0.98 \text{ m/s}^2$
- 7. If the mass of an object doubles, its weight